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nately, these conditions seem to apply only to
a plane wave normally incident upon aninfi.
nite flat sheet. Consequently, the point-match-
ing method appears to be a meaningful ap-
proximation for nontrivial exterior boundary
value problems only if Cis nearly circular.

It is certainly easier to write down the
equations for the point-matching method than
for either the exact integral equation method
[11] or the exact extended boundary condi-
tion method of Waterman [12], both of
which can be based on (2). However, the
computational effort required to reach a solu-
tion cannot be significantly less for the point-
matchiug method, even though the exact
methods involve more work in the setting up
of the main computations (a subtle distinc-
tion which was pointed out by a reviewer).
For equal accuracy (in those instances when
the point-matching method is valid) at least
as many linear algebraic equations must be
solved simultaneously (it is the solution of
these equations which absorbs the major part
of the computational effort). Consequently, it
is suggested that the point-matching method
should be discarded in favor of either Har-
rington’s [5] proposed extension of the
method or the exact methods [11], [12].
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Computer-Graphic Analysis of

Dielectric Waveguides

The solutions to microwave problems are
often enhanced by a visual representation of
the fields, especially when the mathematical
expressions are so complex as to resist phys-
ical interpretation by themselves. The particu-
lar graphical aid which is the subject of this
correspondence is the field mapping, defined
as a family of curves drawn parallel to the
vector field being represented. Although such
diagrams have been considered to be of great
value since the early study of electrodynamics
[1], the analytical and numerical complexi-
ties of modern engineering problems have in-
hibited their use on any wide scale. However,
the current availability of digital computers,
with compatible automatic plotting equip-
ment, has made the numerical determination
and display of field mappings a very practical
adjunct to established analytical methods.
The purpose of this correspondence is to illus-
trate the utility of field mapping by displaying
the transverse electric field for the HEI1 mode
on a dielectric rod. It will be shown that the
curvature of the field lines is in the opposite
direction to that commonly assumed.

The equipment utilized in this study has
been an IBM 7094 computer in conjunction
with a Stromberg-Carlson 4020 microfilm
unit. The computer performs all the calcula-
tions required to construct the field lines and
stores the results on magnetic tape. These
computed results are then used to control
a cathode ray tube display, which is pho-
tographed and reproduced by standard
methods.

Mathematically, electric field lines in a
plane are the solution trajectories of the first-
order differential equation

dy E. (X, y)
~ = tan [.(2, y)] = -v; (1)

z

where a is the angle between the electric vec-
tor at (x, y) and the +x-axis. A first-order
numerical approximation to that trajectory
passing through a typical boundary point P,
is depicted in Fig. 1. The calculation is made
by using a first-order difference scheme, in
which the point (X,+l, yi+J is determined from
(xi, y.) according to the relation

Z,+l = x; + 6s Cos a!,

y~+l = y~ + 6s sin a, (2)

where 6s is the path increment. Although this
approximation can be refined to whatever ac-
curacy is required [2], it is generally possible
to find a path increment sufficiently small to
give smooth and accurate contours without
impractical amounts of computation.

The application to be considered in this
correspondence is the determination of the
transverse electric field for the fundamental
(HEu) mode of propagation along a dielec-
tric rod with circular cross section. This mode
is of significant interest in the analysis of di-
electric waveguides [3], dielectric rod anten-
nas [4] and more recently for its application
to fiber optics and lasers [5]. Brown and Spec-
tor [6] and Snitzer [7] studied the field con-
figuration when the slow wave phase velocity
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Fig. 1. Fkst-order difference solution for the field lines.
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Fig. 2. Cylindrical geometry.

is near the free space velocity (assuming the
rod to be in vacuum) and showed that in this
limiting situation the field lines in the rod be-
come straight and parallel. Although the
more general case of arbitrary dielectric con-
stant has never been accurately studied, it is
commonly assumed that the field lines ap-
proach the configuration for the TEII mode in
a circular waveguide. The apparent justifi-
cation for this conjecture is that as the wave is
slowed down, the power becomes concen-
trated in the rod in the same way as power is
contained within a metallic wavegnide. Ac-
tually the situation is not analogous, since the
fields do not vanish abruptly beyond the sur-
face of a dielectric rod, with the result that
there is always some power being transmitted
in the region outside.

The cylindrical coordinate representation
is shown in Fig. 2. The rod is assumed to have
radius a, relative perrnittivity e, and a relative
permeability of unity. As is well known, the
electromagnetic field for the HE1l mode is
derived from a linear combination of z-
directed magnetic and electric Hertz vectors
[3]. The electric field may be represented by

E = V X (e.V1) + V X (e, X vvz) (3)

where, for the field inside

(3z = ,,koz – h~

lc~ = free space wavenumber. (5)
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Fig. 3. Computer output, showing transverse electric field inside the rod for the HEn mode. a/Ao =0.1, ~ = 12.0. The coordmtes are normalized with respect to the rod radius.

The corresponding potential functions outside
are given by

T’lo = CK1(@Op)eih”
{

Cos+

sin @

V2° = DK1(@Op)e(~z
{

sin 4

Cos+

@OZ= hs – k,z (6)

where Kl(u) denotes the modified Bessel fnnc-
tion of the second kind.

The propagation constant h and the rela-
tive amplitudes are obtained by requiring
that E+, H+, E., and H, be continuous at
p= a. The mathematical detaik are available
in Brown and Spector [6].

A typical graphic output is given in Fig. 3,
which shows the electric field lines inside a
rod with a/h. =0.1 13 and c,= 12.0, where XOis
the free space wavelength. For this case, the
wave is slowed to approximately 54 percent of
its free space velocity. Notice that the bulging
is in the opposite sense to the TEII in a metal-
lic circular guide. Moreover, the field lines
inside are not normal to the boundary. They
are, however, nearly normal outside, due to
the high relative permittivity and the bound-
ary condition for the normal electric field

EPOUi = ,,EPin. (7)

A composite drawing of both the internal
and external field configurations, taken from

graphical outputs similar to Fig. 3, is shown
in Fig. 4.

In this communication we have described
a technique and application of numerical
mapping of vector field lines, and have found
it to be a practical and useful aid in the solu-
tion of complex boundary value problems.
Other ways in which computer-graphic aids
may be utilized are suggested by the avail-
ability of motion picture outputs from com-
puters [8]. It is expected that such dynamic
representations will be of significant value in
such areas as the analysis of elliptically polar-
ized, or nonharmonic electromagnetic fields,
where the equations alone are not always suffi-
cient for the results to be fully understood and
utilized.
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Fig. 4. Complete field mapping for HEIu mode.
a/kO =0.1, E, =12.0.
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On the Reflection of Waves by a Sinus-

oidally Stratified Half-Space

In this correspondence electromagnetic
waves are taken to be obliquely incident on a
sinu80idally stratified half-space. Both hori-
zontally and vertically polarized waves are
considered, and approximate reflection coeffi-
cients are obtained by using some formulas
given by Heading [7].

A subject which has received considerable
attention recently [1 ]– [6] is electromagnetic
wave propagation in a sinusoidally stratified
medium. This topic has application, for ex-
ample, to the theory of electromagnetic waves
in a plasma through which acoustic waves are
propagating. In a planar stratified medium,
the electromagnetic field can be expressed as
the sum of two partial fields which propagate
independently. These are often referred to as
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horizontally and vertically polarized waves, in
which the electric and magnetic vectors, re-
spectively, are parallel to the stratifications.
Heading [7] studied the reflection of electro-
magnetic waves in a planar stratified medium
by expressing the reflected field as an integral
over contributions scattered back from ele-
mentary layers of thickness 6Z situated at
level z in the medium. Approximate expres-
sions for the reflection coefficients were ob-
tained by using the Born approximation, thus
neglecting multiple scattering. In this cor-
respondence, Heading’s single scattering for-
mulas are applied to the problem of reflection
from a sinusoickdly stratified half-space.

Suppose that the region z <O is a homo-
geneous dielectric of permittivity,. The region
z> O is taken to have permittivity c,(z) rela-
tive to that of the medium in z <O, where

E,(Z) = :,[1 – A COS (2m/d + +)]. (1)

In this equation G, A, d, and @are independent
of z. The permeability P is taken to be the
same for all z. Losses are neglected so that the
permittivity and permeability are everywhere
real. Suppose that electromagnetic waves are
obliquely incident from the region z <O. The
configuration is shown in Fig. 1. Rectangular
Cartesian coordinates x, y, z are used with the
fields independent of y. Let Ez and Hz denote
the x-components of electric and magnetic
fields, with similar notation for the other com-
ponents. In horizontally and vertically polar-
ized waves the nonzero components are Eu,

Hz, and H. in the former, and H., E., and Eg
in the latter.
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Fig. 1. The configuration,

Let the reflection coefficients for hori-
zontally and vertically polarized incident
waves be Rh and R,, respectively. Heading’s
single scattering results are

m

&#- “J[ 1 – e,(z) ]e-iz~c’dz (2)
2C o

and

R+ 32C’ - 1)~”[1- G(z)]
0

These formulas are applicable for a time fac-
tor e@”, where w is the angular frequency and
t the time. In them k = CO(W)l12and C= cos O,
0 being the angle of incidence. Equations (2)
and (3) are expected to be useful approxima-
tions when the resulting reflection coefficients
are of small magnitude. They apply in the case
of weak scattering so that Z, should be near
unity and A should be small.
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Equation (2) will now be evaluated, e,(z)
being given by (l). Use is made of the integral

——& [aCos(b* + c)

+ b sin (bz + c)]. (4)

In evaluating the integral in (2) at the upper
limit, it is assumed that k has a small nega-
tive imaginary part which is later allowed to
tend to zero. The result is

Rh + :–$ + GA kd 2

()(lcCd/r)z – 1 ~

(

‘iT
. cos++————

?Nd )
sin ~ . (5)

The term (1 – G)/4C2 is the approximate re-
flection coefficient when the medium in z >0 is
homogeneous and represented by G. Thus,
this term can be regarded as the reflection
coefficient for an “averaged medium.” The
rest of(5) allows for the effects of the modula-
tion of the permittivity about its average
value.

Suppose now that:, =1. That is, the aver-
age permittivity of the half-space z >0 is equal
to the permittivity of the half-space z <O. If
~ is now taken to have the values O or T/2, (5)
reduces to

A (kd~2r) 2

“ : (hCd/r)z – 1
(6)

and

R, ~ (iA /2C) (kd/2r)

“ (kCd/r)’ – 1 ‘
(7)

respectively. These are equivalent to (53) and
(55) of Tamir et al. [1]. In these two cases, the
change in permittivity across the boundary
z = O is a maximum (for fixed A) and zero,
respectively.

It has been pointed out by a reviewer that
the reflection coefficients will not be valid for
wavelengths satisfying the Bragg condition.
With G near unity and A small the Bragg con-
dition is

kCd + n. n=l,2,3, . . . . (8)

In particular, when the first (n = 1) Bragg con-
dition is satisfied, (5)+7) become infinite.

The work of Tamir et al. [1] was restricted
to the case of horizontally polarized waves.
Then the fields in the sinusoidally stratified
medium can be expressed exactly in terms of
solutions to Mathieu’s equation. Particular
attention was paid to the situation in which
the permittivity modulations are small [1] and
results were obtained by approximating the
exact solutions. The case of vertically polarized
waves is more complicated; the differential
equation governing the fields in the sinus-
oidally stratified medium is Hill’s equation.
A series solution was obtained by Yeh et al.
[3]. It is of particular interest to note that, for
the reflection problem considered here, Head-
ing’s formulas give results for both hori-
zontally and vertically polarized waves. A


